
CNT 4714: JSPs – Part 2 Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2013

Introduction to JavaServer Pages (JSP) – Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/fall2013

CNT 4714: JSPs – Part 2 Page 2 Dr. Mark Llewellyn ©

A JSPs Conversion To A Servlet

• As shown in the diagram of the lifecycle of a JSP shown in part

2 (page 2), a JSP is converted into a servlet during execution.

• While the converted servlet looks very similar in nature to those

we have already seen, there are some differences.

• Within Tomcat, the servlet version of the JSP is stored in the
work directory (see part 2, page 12).

• The exact directory within the work directory depends in part

on your Tomcat set-up and in part on your web-application

structure. The next slide illustrates the location of the servlet
files that were generated for the ComputeLoan.jsp and

ComputeLoan2.jsp applications that appeared in part 2 of

the notes on pages 7 and 13 respectively.

CNT 4714: JSPs – Part 2 Page 3 Dr. Mark Llewellyn ©

Servlet Versions of JSPs in Tomcat

The servlet files

corresponding to the JSPs

from the loan web-

application example

D
ire

c
to

ry
 lo

c
a

tio
n

 o
f th

e
 s

e
rv

le
t file

s
 in

w
o

rk
/C

a
ta

lin
a

/lo
c
a

lh
o
s
t/C

N
T

4
7

1
4
/o

rg
/a

p
a
c
h

e
/js

p
/js

p

CNT 4714: JSPs – Part 2 Page 4 Dr. Mark Llewellyn ©

The Converted JSP - Servlet Version
ComputeLoan

Note that this package is reflected in the

location shown in the previous slide.

CNT 4714: JSPs – Part 2 Page 5 Dr. Mark Llewellyn ©

Scroll well down in this file and

eventually you will find the

beginning of the original HTML

output from the JSP.

CNT 4714: JSPs – Part 2 Page 6 Dr. Mark Llewellyn ©

The Converted JSP - Servlet Version

Import the Loan class in package code

ComputeLoan2

CNT 4714: JSPs – Part 2 Page 7 Dr. Mark Llewellyn ©

Begin the HTML content from the

original ComputeLoad.jsp file

now constructed from within the

servlet (i.e., Java).

CNT 4714: JSPs – Part 2 Page 8 Dr. Mark Llewellyn ©

<jsp: setProperty> Action

• Action <jsp: setProperty> sets JavaBean property

values and is most useful for mapping request parameter

values to JavaBean properties.

• Request parameters can be used to set properties of primitive

types boolean, byte, char, short, int,

long, float and double as well as java.lang

types String, Boolean, Byte, Character,

Short, Integer, Long, Float, and Double.

• The table on the following page summarizes the attributes of

this action.

CNT 4714: JSPs – Part 2 Page 9 Dr. Mark Llewellyn ©

<jsp: setProperty> Action

Attribute Description

name The ID of the JavaBean for which a property (or properties) will be set.

property

The name of the property to set. Specifying “*” for this attribute specifies

that the JSP should match the request parameters to the properties of the

bean. For each request parameter that matches (i.e., the name of the request

parameter is identical to the bean’s property name), the corresponding

property in the bean is set to the value of the parameter. If the value of the
request parameter is “”, the property value in the bean remains unchanged.

param

If the request parameter names do not match bean property names, this

attribute can be used to specify which request parameter should be used to

obtain the value for a specific bean property. This attribute is optional. If this

attribute is omitted, the request parameter names must match the bean

property names.

value

The value to assign to a bean property. The value typically is the result of a

JSP expression. This attribute is particularly useful for setting bean

properties that cannot be set using request parameters. This attribute is

optional. If this attribute is omitted, the JavaBean property must be of a type

that can be set using request parameters.

CNT 4714: JSPs – Part 2 Page 10 Dr. Mark Llewellyn ©

JSP Directives

• Directives are messages to the JSP container that enable the

programmer to specify page settings, such as, the error page to

invoke if an error occurs (page directive), including content from

other resources (include directive), and to specify custom-tag

libraries for use in a JSP (taglib directive).

• Directives are delimited by <%@ and %> and are processed at

translation time. As such, directives do not produce any

immediate output, because they are processed before the JSP

accepts any requests.

• For our purposes here, the most important of these is the page

directive, which we will make use of in the final example JSP.

Some of the attributes of the page directive are shown on the next

page.

CNT 4714: JSPs – Part 2 Page 11 Dr. Mark Llewellyn ©

JSP Page Directive Attributes

Attribute Description

import
Specifies a comma-separated list of fully qualified type names and/or

packages that will be used in the current JSP.

errorPage

Any exceptions in the current page that are not caught are sent to the error
page for processing. The error-page implicit object exception references

the original exception.

extends

Specifies the class from which the translated JSP can inherit. This attribute

must be a fully qualified class name.

CNT 4714: JSPs – Part 2 Page 12 Dr. Mark Llewellyn ©

<jsp: useBean> Action
• Action <jsp: useBean> enables a JSP to manipulate a Java

object. This action creates a Java object or locates an existing

object for use in the JSP.

• The table on the following page summarizes the attributes of this

action.

• If attributes class and beanName are not specified, the JSP

container attempts to locate an existing object of the type specified

in attribute type.

• Like JSP implicit objects, objects specified with this action have

scope – page, request, session, or application – which indicates

where they can be used in a web application. (Recall that objects

with page scope are only accessible by the page in which they are

defined. For example, all JSPs that process a single request can

access an object in request scope.)

CNT 4714: JSPs – Part 2 Page 13 Dr. Mark Llewellyn ©

<jsp: useBean> Action

Attribute Description

id
The name used to manipulate the Java object with actions
<jsp:setProperty> and <jsp:getProperty>. A variable of this

name is also declared for use in JSP scripting elements. Case sensitive.

scope
The scope in which the Java object is accessible – page, request,

session, or application. The default scope is page.

class
The fully qualified class name of the Java object.

beanName
The name of the JavaBean that can be used with method instantiate of

class java.beans.Beans to load a JavaBean into memory.

type

The type of the JavaBean. This can be the same type as the class attribute, a

superclass of that type, or an interface implemented by that type. The default
value is the same as for attribute class. A ClassCastException occurs

if the Java object is not of the type specified with attribute type.

CNT 4714: JSPs – Part 2 Page 14 Dr. Mark Llewellyn ©

A JSP Using <jsp: useBean> Action

• A common feature on many web sites is to place rotating

advertisements on their webpages. Each visit to one of these

pages results in a different advertisement being displayed in the

user’s web browser. Typically, when you click on the

advertisement (or picture of a product) you are redirected to the

website of the company that placed the advertisement or to the

page that more completely describes the product.

• The next example illustrates a similar scenario, by rotating

through a series of pictures (click the refresh button of your

browser to simulate multiple logins or login from different

browsers). In this example, I set it up to rotate through some

pictures of some of my toys. If you click on a picture…you’ll

be redirected to the manufacturer’s web page.

CNT 4714: JSPs – Part 2 Page 15 Dr. Mark Llewellyn ©

A JSP Using the <jsp: useBean> Action
// Rotator.java

// A JavaBean that rotates pictures.

package com.cnt4174.jsp.beans;

public class Rotator

{

private String images[] = { "images/image1.jpg",

"images/image2.jpg", "images/image3.jpg",

"images/image4.jpg", "images/image5.jpg" };

private String links[] = {

"http://www.eddymerckx.be",

"http://www.competitivecyclist.com",

"http://www.bianchi-usa.com",

"http://www.colnago.it",

"http://www.cometkartsales.com" };

private int selectedIndex = 0;

// returns image file name for current ad

public String getImage()

{

return images[selectedIndex];

} // end method getImage

//continue here -- returns the URL for corresponding Web

site

public String getLink() {

return links[selectedIndex];

} // end method getLink

// update selectedIndex so next calls to getImage and

// getLink return a different picture

public void nextPic()

{

selectedIndex = (selectedIndex + 1) % images.length;

} // end method nextPic

} // end class Rotator

CNT 4714: JSPs – Part 2 Page 16 Dr. Mark Llewellyn ©

<?xml version = "1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- picturerotator.jsp -->

<jsp:useBean id = "rotator" scope = "session"

class = "com.cnt4714.jsp.beans.Rotator" />

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>PictureRotator Example</title>

<style type = "text/css">

.big { font-family: helvetica, arial, sans-serif; font-weight: bold; font-size: 2em }

</style>

<%-- update picture --%>

<% rotator.nextPic(); %>

</head>

<body>

<p class = "big">PictureRotator Example</p>

<p>

<a href = "<jsp:getProperty name = "rotator"

property = "link" />">

<img src = "<jsp:getProperty name = "rotator"

property = "image" />" alt = "picture" />

</p>

</body>

</html>

picturerotator.jsp

<jsp: useBean> action

specifying id, scope, and

class

CNT 4714: JSPs – Part 2 Page 17 Dr. Mark Llewellyn ©

First image seen in

the rotation of five

images.

CNT 4714: JSPs – Part 2 Page 18 Dr. Mark Llewellyn ©

Second image seen

in the rotation of five

images.

CNT 4714: JSPs – Part 2 Page 19 Dr. Mark Llewellyn ©

Another image seen

in the rotation of five

images.

CNT 4714: JSPs – Part 2 Page 20 Dr. Mark Llewellyn ©

Fifth and final image

seen in the rotation

of five images.

CNT 4714: JSPs – Part 2 Page 21 Dr. Mark Llewellyn ©

Redirected to web site by clicking on the image

CNT 4714: JSPs – Part 2 Page 22 Dr. Mark Llewellyn ©

More Details On Using Beans

• The Rotator bean has three elements: getImage, getLink, and

nextPic.

– Method getImage returns the image file name for the picture to be

displayed.

– Method getLink returns the hyperlink to the manufacturer/supplier of the

“toy”.

– Method nextPic updates the Rotator so that the next calls to getImage and

getLink will return information for a different picture.

• Methods getImage and getLink each represent a read-only JavaBean

property – image and link, respectively. These are read-only

properties because no set methods are provided to change their values.

• Rotator keeps track of the current picture with its selectedIndex

variable, which is updated by invoking method nextPic.

CNT 4714: JSPs – Part 2 Page 23 Dr. Mark Llewellyn ©

More Details On Using Beans (cont.)

• JavaBeans were originally intended to be manipulated visually

in visual development environments (often called builder tools

or IDEs).

• Builder tools that support beans provide programmers with

tremendous flexibility by allowing for the reuse and integration

of existing disparate components that, in many cases, were

never intended to be used together.

• When used in an IDE, JavaBeans adhere to the following

coding conventions:

1. Implements the Serializable interface.

2. Provides a public no-argument (default) constructor.

3. Provides get and/or set methods for properties (which are normally

implemented as fields.)

CNT 4714: JSPs – Part 2 Page 24 Dr. Mark Llewellyn ©

More Details On Using Beans (cont.)

• When used on the server side, such as within a JSP or a

servlet, JavaBeans are less restricted.

– Notice for example, that the Rotator bean does not

implement the Serializable interface because there is no

need to save and load the Rotator bean as a file.

• The JSP picturerotator.jsp (see page 6) obtains a

reference to an instance of class Rotator. The id for the

bean is rotator. The JSP uses this name to manipulate the

bean. The scope of the object is session, so that every

client will see the same sequence of pictures during their

browsing sessions.

CNT 4714: JSPs – Part 2 Page 25 Dr. Mark Llewellyn ©

More Details On Using Beans (cont.)

• When picturerotator.jsp receives a request from a new

client, the JSP container creates the bean and stores it in that

client’s session (an HttpSession object).

• In each request to this JSP, the rotator reference which is

created is used to invoke the Rotator bean’s nextPic method.

Therefore, each request will receive the next picture selected by

the Rotator bean.

• Notice the two <jsp: getProperty> actions in the

picturerotator.jsp file. One of these obtains the link

property value from the bean, the other obtains the image

property value.

– Action <jsp: getProperty> has two attributes: name and

property, which specify the bean object to manipulate and the

property to get.

CNT 4714: JSPs – Part 2 Page 26 Dr. Mark Llewellyn ©

More Details On Using Beans (cont.)

• Action <jsp: getProperty> has two attributes: name

and property, which specify the bean object to manipulate

and the property to get.

– If the JavaBean object uses standard JavaBean naming

conventions, the method used to obtain the link property

value from the bean should be getLink.

– Action <jsp: getProperty> invokes getLink on the

bean referenced with rotator, converts the return value into

a String and outputs the String as a part of the response to

the client.

CNT 4714: JSPs – Part 2 Page 27 Dr. Mark Llewellyn ©

More Details On Using Beans (cont.)

• The link and image properties can also be obtained with JSP
expressions.

– The action <jsp: getProperty> (see page 6 for location, the line looks like: <a

href = "<jsp:getProperty name = "rotator" property = "link" />">) could be replaced with the
expression: <%= rotator.getLink() %>

– Similarly, the action <jsp: getProperty> (see page 6 for location, the line
looks like: <img src = "<jsp:getProperty name = "rotator" property = "image" />" alt = "picture" />) could
be replaced with the expression:

<%= rotator.getImage() %>

• However, the benefit of using actions is that someone who is
unfamiliar with Java can be told the name of a property and the
name of a bean, and it is the action’s responsibility to invoke the
appropriate methods. The Java programmer’s job is to create a
bean that supports the capabilities required by the page designer.

CNT 4714: JSPs – Part 2 Page 28 Dr. Mark Llewellyn ©

Final JSP Example - GuestBook
• Our final JSP example will illustrate many of the techniques

that we’ve covered in dealing with JDBC, servlets, and JSPs.

• This example constructs a simple MySQL database to
maintain a guest book that includes a guest’s first name, last
name, and email address.

– Once a guest enters their name into the guestbook, they will see a
webpage containing all the guests in the guest book. Each email
address is displayed as a hyperlink that makes it possible for guests to
send email to another guest.

• This example illustrates the <jsp: setProperty>

action, the JSP page directive, JSP error pages, and using
JDBC from a JSP.

CNT 4714: JSPs – Part 2 Page 29 Dr. Mark Llewellyn ©

GuestBean.java

// GuestBean.java

// JavaBean to store data for a guest in the guest book.

package com.cnt4714.jsp.beans;

public class GuestBean

{

private String firstName;

private String lastName;

private String email;

// set the guest's first name

public void setFirstName(String name)

{

firstName = name;

} // end method setFirstName

// get the guest's first name

public String getFirstName()

{

return firstName;

} // end method getFirstName

This JavaBean maintains

information for one guest.

CNT 4714: JSPs – Part 2 Page 30 Dr. Mark Llewellyn ©

GuestBean.java (cont.)

// set the guest's last name

public void setLastName(String name)

{

lastName = name;

} // end method setLastName

// get the guest's last name

public String getLastName()

{

return lastName;

} // end method getLastName

// set the guest's email address

public void setEmail(String address)

{

email = address;

} // end method setEmail

// get the guest's email address

public String getEmail()

{

return email;

} // end method getEmail

} // end class GuestBean

CNT 4714: JSPs – Part 2 Page 31 Dr. Mark Llewellyn ©

GuestDataBean.java
// GuestDataBean.java

// Class GuestDataBean makes a database connection and supports

// inserting and retrieving data from the database.

package com.cnt4714.jsp.beans;

import java.sql.SQLException;

import javax.sql.rowset.CachedRowSet;

import java.util.ArrayList;

import com.sun.rowset.CachedRowSetImpl; // CachedRowSet implementation

public class GuestDataBean

{

private CachedRowSet rowSet;

// construct TitlesBean object

public GuestDataBean() throws Exception

{

// load the MySQL driver

Class.forName("com.mysql.jdbc.Driver");

// specify properties of CachedRowSet

rowSet = new CachedRowSetImpl();

rowSet.setUrl("jdbc:mysql://localhost:3310/guestbook");

rowSet.setUsername("root");

rowSet.setPassword("root");

This JavaBean performs the

database access on behalf of

the guestBookLogin.jsp

Load JDBC driver

and connect to

database

This application uses the CachedRowSet

data model rather than the TableSet from

our earlier JDBC application example.

Note this will cause compilation errors in

Eclipse. Change the default settings in

Eclipse : Windows -> Preferences -> Java ->

Compiler -> Errors/Warnings -> Deprecated

and restricted API -> Forbidden reference

(access rules): -> change from error to

warning.

CNT 4714: JSPs – Part 2 Page 32 Dr. Mark Llewellyn ©

GuestDataBean.java (cont.)

// obtain list of titles

rowSet.setCommand(

"SELECT firstName, lastName, email FROM guests");

rowSet.execute();

} // end GuestDataBean constructor

// return an ArrayList of GuestBeans

public ArrayList< GuestBean > getGuestList() throws SQLException

{

ArrayList< GuestBean > guestList = new ArrayList< GuestBean >();

rowSet.beforeFirst(); // move cursor before the first row

// get row data

while (rowSet.next())

{

GuestBean guest = new GuestBean();

guest.setFirstName(rowSet.getString(1));

guest.setLastName(rowSet.getString(2));

guest.setEmail(rowSet.getString(3));

guestList.add(guest);

} // end while

CNT 4714: JSPs – Part 2 Page 33 Dr. Mark Llewellyn ©

GuestDataBean.java

return guestList;

} // end method getGuestList

// insert a guest in guestbook database

public void addGuest(GuestBean guest) throws SQLException

{

rowSet.moveToInsertRow(); // move cursor to the insert row

// update the three columns of the insert row

rowSet.updateString(1, guest.getFirstName());

rowSet.updateString(2, guest.getLastName());

rowSet.updateString(3, guest.getEmail());

rowSet.insertRow(); // insert row to rowSet

rowSet.moveToCurrentRow(); // move cursor to the current row

//rowSet.acceptChanges(); // force propagation of changes to database

} // end method addGuest

} // end class GuestDataBean

Note that the

acceptChanges() method

forces MySQL to perform

a commit operation to

make the changes

permanent in the

database. If your MySQL

installation had

autocommit set on (forcing

automatic commits, you’ll

want to comment out this

line, or in the reverse, if

your MySQL has

autocommit set off, you’ll

need to include this line of

code.

CNT 4714: JSPs – Part 2 Page 34 Dr. Mark Llewellyn ©

GuestBookLogin.jsp

<?xml version = "1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- guestBookLogin.jsp -->

<%-- page settings --%>

<%@ page errorPage = "guestBookErrorPage.jsp" %>

<%-- beans used in this JSP --%>

<jsp:useBean id = "guest" scope = "page"

class = "com.cnt4714.jsp.beans.GuestBean" />

<jsp:useBean id = "guestData" scope = "request"

class = "com.cnt4714.jsp.beans.GuestDataBean" />

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Guest Book Login</title>

<style type = "text/css">

body

{

font-family: tahoma, helvetica, arial, sans-serif;

}

GuestBookLogin.jsp is a modified

version of our welcome1.jsp and

welcome1 servlet that we’ve already

seen. It displays a form that the

guest uses to enter their information.

When the form is submitted,

GuestBookLogin.jsp is requested

again so that it can ensure that all of

the data is entered. If not, the form is

regenerated until the guest enters all

information. If all information is

entered, then this JSP forwards the

request to guestBookView.jsp to

display the contents of the guest

book.

All uncaught exceptions are

forwarded to

guestBookErrorPage.jsp for

processing.

CNT 4714: JSPs – Part 2 Page 35 Dr. Mark Llewellyn ©

GuestBookLogin.jsp (cont.)
table, tr, td {

font-size: 1.4em;

border: 3px groove;

padding: 5px;

background-color: #dddddd;

}

</style>

</head>

<body>

<jsp:setProperty name = "guest" property = "*" />

<% // start scriptlet

if (guest.getFirstName() == null ||

guest.getLastName() == null ||

guest.getEmail() == null)

{

%> <%-- end scriptlet to insert fixed template data --%>

<form method = "post" action = "guestBookLogin.jsp">

<p>Enter your first name, last name and email

address to register in our guest book.</p>

<table>

<tr>

<td>First name</td>

<td>

<input type = "text" name = "firstName" />

</td>

</tr>

<jsp: setProperty> action

CNT 4714: JSPs – Part 2 Page 36 Dr. Mark Llewellyn ©

GuestBookLogin.jsp (cont.)
<tr>

<td>Last name</td>

<td> <input type = "text" name = "lastName" /> </td>

</tr>

<tr>

<td>Email</td>

<td> <input type = "text" name = "email" /> </td>

</tr>

<tr>

<td colspan = "2"> <input type = "submit" value = "Submit" /> </td>

</tr>

</table>

</form>

<% // continue scriptlet

} // end if

else

{

guestData.addGuest(guest);

%> <%-- end scriptlet to insert jsp:forward action --%>

<%-- forward to display guest book contents --%>

<jsp:forward page = "guestBookView.jsp" />

<% // continue scriptlet

} // end else

%> <%-- end scriptlet --%>

</body>

</html>

Once the guest has entered their

information into the database, the

guestBookView is generated via

the <jsp: forward> action which

invokes the guestBookView JSP.

CNT 4714: JSPs – Part 2 Page 37 Dr. Mark Llewellyn ©

GuestBookView.jsp

<?xml version = "1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- guestBookView.jsp -->

<%-- page settings --%>

<%@ page errorPage = "guestBookErrorPage.jsp" %>

<%@ page import = "java.util.*" %>

<%@ page import = "com.cnt4714.jsp.beans.*" %>

<%-- GuestDataBean to obtain guest list --%>

<jsp:useBean id = "guestData" scope = "request"

class = "com.cnt4714.jsp.beans.GuestDataBean" />

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Guest List</title>

<style type = "text/css">

body

{

font-family: tahoma, helvetica, arial, sans-serif;

}

These three page directives

specify that the error page for

this JSP is

guestBookErrorPage.jsp, that

classes from package java.util

are used in this JSP, and

classes from the package

com.cnt4714.jsp.beans are also

used.

CNT 4714: JSPs – Part 2 Page 38 Dr. Mark Llewellyn ©

GuestBookView.jsp (cont.)
table, tr, td, th

{

text-align: center;

font-size: 1.4em;

border: 3px groove;

padding: 5px;

background-color: #dddddd;

}

</style>

</head>

<body>

<p style = "font-size: 2em;">Guest List</p>

<table>

<thead>

<tr>

<th style = "width: 100px;">Last name</th>

<th style = "width: 100px;">First name</th>

<th style = "width: 200px;">Email</th>

</tr>

</thead>

<tbody>

<% // start scriptlet

List guestList = guestData.getGuestList();

Iterator guestListIterator = guestList.iterator();

GuestBean guest;

CNT 4714: JSPs – Part 2 Page 39 Dr. Mark Llewellyn ©

GuestBookView.jsp (cont.)

while (guestListIterator.hasNext())

{

guest = (GuestBean) guestListIterator.next();

%> <%-- end scriptlet; insert fixed template data --%>

<tr>

<td><%= guest.getLastName() %></td>

<td><%= guest.getFirstName() %></td>

<td>

<a href = "mailto:<%= guest.getEmail() %>">

<%= guest.getEmail() %>

</td>

</tr>

<% // continue scriptlet

} // end while

%> <%-- end scriptlet --%>

</tbody>

</table>

</body>

</html>

CNT 4714: JSPs – Part 2 Page 40 Dr. Mark Llewellyn ©

guestBookErrorPage.jsp

<?xml version = "1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- guestBookErrorPage.jsp -->

<%-- page settings --%>

<%@ page isErrorPage = "true" %>

<%@ page import = "java.util.*" %>

<%@ page import = "java.sql.*" %>

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Error!</title>

<style type = "text/css">

.bigRed { font-size: 2em; color: red; font-weight: bold; }

</style>

</head>

<body>

<p class = "bigRed">

<% // scriptlet to determine exception type

// and output beginning of error message

if (exception instanceof SQLException)

{

%>

CNT 4714: JSPs – Part 2 Page 41 Dr. Mark Llewellyn ©

guestBookErrorPage.jsp (cont.)

A SQLException

<%

} // end if

else if (exception instanceof ClassNotFoundException)

{

%>

A ClassNotFoundException

<%

} // end else if

else

{

%>

A general exception

<%

} // end else

%>

<%-- end scriptlet to insert fixed template data --%>

<%-- continue error message output --%>

occurred while interacting with the guestbook database.

</p>

<p class = "bigRed"> The error message was:
 <%= exception.getMessage() %>

</p>

<p class = "bigRed">Please try again later</p>

</body>

</html>

CNT 4714: JSPs – Part 2 Page 42 Dr. Mark Llewellyn ©

To run this example you will need to create

the database named guestbook and the

table named guests with the schema

shown above.

The script named “guestbookscript.sql” is

on the course code page for you to use.

CNT 4714: JSPs – Part 2 Page 43 Dr. Mark Llewellyn ©

Initial screen for client

to enter information

to be sent to the

database.

CNT 4714: JSPs – Part 2 Page 44 Dr. Mark Llewellyn ©

User’s screen after they

click the submit button after

entering their information

into the form.

Once they click the submit

button the guestBookLogin

JSP forwards to the

GuestBookView JSP to

display the contents of the

guest book (the database)

at that point in time.

CNT 4714: JSPs – Part 2 Page 45 Dr. Mark Llewellyn ©

After a number of

people have entered

information into the

database.

Once information is

entered into the

database, the

guestBookLogin JSP

forwards to the

GuestBookView JSP

to display the

contents of the guest

book.

CNT 4714: JSPs – Part 2 Page 46 Dr. Mark Llewellyn ©

CNT 4714: JSPs – Part 2 Page 47 Dr. Mark Llewellyn ©

Causing An Error From GuestBookLogin JSP

Email address is

the primary key

and this one will

be a duplicate

value when the

user clicks the

submit button.

Next page

illustrates the

results.

CNT 4714: JSPs – Part 2 Page 48 Dr. Mark Llewellyn ©

Causing An Error From GuestBookLogin JSP (cont.)

Error page was

generated due to

the duplicate key

value.

